Fonctions affines

1. Définition :

Une fonction affine est définie sur \mathbb{R} .

C'est une fonction qui multiplie tout réel x par un réel constant a et lui ajoute le réel constant b. Elle a donc pour expression f(x) = ax + b.

Propriété caractéristique : Une fonction affine est caractérisée par le fait que son taux d'accroissement est constant. En effet, si x1 et x2 sont deux réels quelconques, l'accroissement $f(x_1) - f(x_2)$ est proportionnel à $x_1 - x_2$, comme le donne l'égalité $\frac{f(x_2) - f(x_1)}{x_1} = \frac{f(x_3) - f(x_1)}{x_2} = a$

x	<i>x</i> ₁	x_2	<i>x</i> ₃
f(x)	<i>y</i> ₁	y_2	y_3

Cas particulier :

- Si a = 0 alors la fonction est constante f(x) = b
- Si b=0 alors f(x)=ax la fonction est linéaire et traduit une **situation** de proportionnalité entre x et f(x)

<u>Exercice 1</u>: Parmi les fonctions suivantes, lesquelles sont affines ? si oui, donner les valeurs de α et b

$$f(x) = -\frac{7}{32}x + 1$$

$$g(x) = 5(x+1);$$
 $h(x) = -3x$ $i(x) = 2x^2 + 3$

$$h(x) = -3x$$

$$i(x) = 2x^2 + 3$$

$$k(x) = (x+1)^2 - x^2$$
 $m(x) = \frac{4-x}{3}$ $n(x) = 4$

$$m(x) = \frac{4-x}{3}$$

$$n(x) = 4$$

Une fonction affine est telle que f(1) = 2 *et* f(4) = 5Exercice 2: identifier une fonction affine:

- 1. a) Calculer l'accroissement Δx entre 1 et 4 : b) calculer l'accroissement Δy des images de 1 et 4 : c) en déduire le nombre a : Donc f(x) = ...x + b
- 2. En utilisant f(1) = 2, déterminer b

Exercice 3 : déterminer la fonction affine f dans chaque cas :

a)
$$f(2) = 7$$
 et $f(5) = 16$

b)
$$f(1) = 12$$
 et $f(3) = 4$

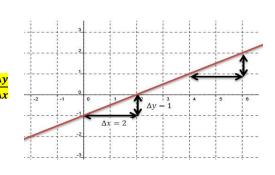
c)
$$f(1) = 2.5$$
 et $f(5) = 3.8$

2. Représentation graphique d'une fonction affine:

La représentation graphique d'une fonction affine f définie par f(x) = ax + b est une droite

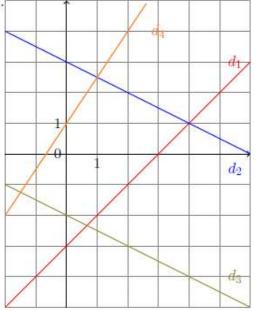
On dit que cette droite a pour équation y = ax + b

- Le nombre a est le <u>coefficient directeur</u> de la droite : $a = \frac{\Delta y}{\Delta x}$
- b est l'ordonné à l'origine de la droite car b= f(0) dans l'exemple, $a = \frac{1}{2}$ et b = -1 donc $f(x) = \frac{1}{2}x - 1$



Exercice 4

Lire les fonctions affines associées aux droites d₁, d₂, d₃ et d₄.



- 2. Construire les droites représentatives des fonctions
 - $f_a(x) = 3x 4$
 - $f_b(x) = x 1$
 - $f_c(x) = -2x + 3$
 - $f_d(x) = -\frac{5}{4}x + 2$

3. Variations d'une fonction affine :

<u>Théorème</u>: Les variations d'une fonction affine f(x) = ax + b dépendent du signe du coefficient a

Si a > 0 alors f est c<mark>roissante</mark> sur R					
Х	- ∞ +	∞			
f(x)		-			

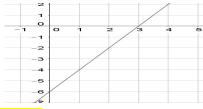
Si a < 0	alors j	f est	: <mark>décro</mark>	<mark>issante</mark>	<mark>s</mark> ur R <mark>:</mark>
Х	- ∞				+ ∞
f(x)					*
. (. ()	2				

Exercice 5: Donner le tableau de variations de f(x) = 5x - 12 et g(x) = -2x + 3

4. Signe de ax + b en fonction de x:

Exemple: le tableau de valeurs de la fonction f(x) = 2x - 6 est

•	,	, ,	,							
						2.9				
	2x - 6	-8	-6	-4	-2	-0.2	0	0.2	2	24



Si x....... alors f(x) < 0, si x..... alors f(x) = 0et si x.... alors f(x) > 0

x	-∞ 3
	+∞
f(x)	- 0 +

Le signe de l'expression ax + b en fonction de x dépend :

- du nombre (qu'on appelle racine) qui est solution de l'équation ax + b = 0
- du coefficient a qui donne le sens de variations.

On résume le signe dans un tableau

<u>Méthode à savoir par cœur</u>: Comment trouver le signe d'une expression du type ax + b avec x une variable réelle?

- On commence par déterminer laen résolvant....en résolvant.....en résolvant......
- On utilise de la fonction $x \to ax + b$ à l'aide du de la fonction $x \to ax + b$ à l'aide du

<u>Exercice 6</u>: donner le signe de : a) 3x + 2 b) -2x + 4 c) 6x d) -0.5x + 7 e) x + 2 f) -2x + 100