Savoir CALCULER AVEC DES PUISSANCES

Ce que je dois savoir

- Lorsqu'on écrit une puissance a^n , on dit que n est l'exposant et a est la base.
- Les formules avec une seule base et plusieurs exposants

•
$$a^m \times a^n = a^{m+n}$$

$$\cdot \frac{1}{a^n} = a^{-n}$$

$$(a^m)^n = a^{m \times n}$$

<u>Remarque</u>: On peut généraliser certaines formules:

$$\bullet \quad a^m \times a^n \times a^p = a^{m+n+p}$$

•
$$((a^m)^n)^p = a^{m \times n \times p}$$

Remarque: On peut inverser certaines formules:

$$\cdot \frac{1}{a^{-n}} = a^n$$

$$\cdot \quad \frac{a^m}{a^n} = \frac{1}{a^{n-m}}$$

Les formules avec un seul exposant et plusieurs bases

•
$$(a \times b)^n = a^n \times b^n$$

$$\bullet \quad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

• $(a \times b)^n = a^n \times b^n$ • $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ Pas de formule simple avec $(a+b)^n$ et $(a-b)^n$...

<u>Remarque</u>: On peut généraliser la première formule: • $(a \times b \times c)^n = a^n \times b^n \times c^n$

Ce que je dois savoir faire

- Calculer la valeur d'une puissance numérique
 - Les grosses puissances s'obtiennent à la calculatrice.
 - · Certaines puissances se connaissent, se reconnaissent ou se calculent de tête :
 - les puissances d'exposants 0 ou 1 : on a $a^0 = 1$ et $a^1 = a$ pour toute base a.
 - les carrés : de $0^2 = 0$ à $10^2 = 100$, puis $11^2 = 121$; $12^2 = 144$; $13^2 = 169$; $14^2 = 196$ et $15^2 = 225$.
 - les cubes : $0^3 = 0$; $1^3 = 1$; $2^3 = 8$; $3^3 = 27$; $4^3 = 64$; $5^3 = 125$.
 - les puissances de 0 ou 1: on a $0^n = 0$ et $1^n = 1$ pour tout exposant entier n (sauf $0^0 = 1$)
 - <u>les puissances de 2</u> : ... ; $2^4 = 16$; $2^5 = 32$; $2^6 = 64$; $2^7 = 128$; $2^8 = 256$; $2^9 = 512$; $2^{10} = 1024$.
 - · On en déduit les puissances de négatifs.

Ne pas confondre $\begin{cases} (-5)^2 = 25 \text{ car le carr\'e concerne le } - \text{ donc c'est } (-5) \times (-5) \text{ positif} \\ -5^2 = -25 \text{ car le carr\'e ne concerne pas le } - \text{ donc c'est } -5 \times 5 \text{ n\'egatif} \end{cases}$

Mais $\begin{cases} (-5)^3 = -125 \text{ car c'est } (-5) \times (-5) \times (-5) \text{ et donc négatif} \\ -5^3 = -125 \text{ car c'est } -5 \times 5 \times 5 \text{ et donc négatif} \end{cases}$

- Simplifier une écriture contenant des puissances
 - Si on a une seule base, on utilise les 1^{eres} formules pour regrouper en un seul a^n .
 - · Si on a plusieurs bases, c'est le plus délicat...

On utilise les 2^{èmes} formules, mais souvent dans les deux sens!

Par exemple, $(a \times b)^n = a^n \times b^n$ peut servir :

- de gauche à droite pour **décomposer** 15³ en 3³×5³ pour éviter un gros nombre ;
- de droite à gauche pour **réduire** $2^3 \times 5^3$ en 10^3 qui se calcule facilement.

Les 1^{ères} formules servent aussi, et dans les deux sens.

Par exemple, $a^m \times a^n = a^{m+n}$ peut servir de droite à gauche pour **décomposer** 5^6 en $5^2 \times 5^4$ si besoin.

Calculer (sans calculatrice) sous la forme d'un entier ou d'une fraction irréductible :

$$A = 2^3$$
; $B = (-3)^3$; $C = 5^3$; $D = (-2)^{10}$; $E = 83^1$; $F = 17^0$; $G = 5^{-2}$; $H = (-3)^{-1}$; $I = \frac{1}{3^{-3}}$; $J = 10^7$; $K = 3^2 + 7^2$; $L = 2^0 + 2^1 + 2^2 + 2^3 + 2^4$; $M = 2^2 + 2^{-2}$; $N = 11^2 - 1^2$

2. Utiliser les formules pour simplifier l'écriture sous la forme d'une puissance a^n à une base et un exposant :

$$A = 5^{3} \times 5^{7}$$
; $B = 3^{5} \times 3 \times 3^{3}$; $C = \frac{7^{12}}{7^{3}}$; $D = \frac{5^{5} \times 5^{8}}{5^{2} \times 5^{3}}$; $E = \frac{1}{7^{8}}$; $F = \frac{13^{5}}{13^{7}}$; $G = 2^{7} \times 2^{-10} \times 2^{2}$;

$$H = (2^3)^3$$
; $I = \left(\frac{1}{5^2}\right)^5$; $J = \frac{11^{-3} \times 11^5}{11^{10} \times 11^{-2}}$; $K = \frac{7 \times 7^2 \times (7^{-2})^2}{(7^2)^6 \times 7^{-12}}$

3. Simplifier les écritures pour pouvoir calculer sous la forme d'un entier ou d'une fraction irréductible :

$$A = 5^6 \times 2^6$$
; $B = 5^6 \times 2^7$; $C = 5^{11} \times 2^9$; $D = \frac{15^3}{5^3}$; $E = \frac{15^3}{5^4}$; $F = \frac{26^2}{39^2}$; $G = \frac{15^3}{6^3}$;

$$H = \frac{10^7}{5^4} ; I = \frac{((7^2)^5)^7}{((7^7)^2)^5} ; J = 21^3 \times 14^{-3} ; K = \frac{15^3 \times 4^5}{27 \times 1000} ; L = 2^{35} \times 0.5^{36}$$